110 research outputs found

    On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference

    Full text link
    Nonparametric methods play a central role in modern empirical work. While they provide inference procedures that are more robust to parametric misspecification bias, they may be quite sensitive to tuning parameter choices. We study the effects of bias correction on confidence interval coverage in the context of kernel density and local polynomial regression estimation, and prove that bias correction can be preferred to undersmoothing for minimizing coverage error and increasing robustness to tuning parameter choice. This is achieved using a novel, yet simple, Studentization, which leads to a new way of constructing kernel-based bias-corrected confidence intervals. In addition, for practical cases, we derive coverage error optimal bandwidths and discuss easy-to-implement bandwidth selectors. For interior points, we show that the MSE-optimal bandwidth for the original point estimator (before bias correction) delivers the fastest coverage error decay rate after bias correction when second-order (equivalent) kernels are employed, but is otherwise suboptimal because it is too "large". Finally, for odd-degree local polynomial regression, we show that, as with point estimation, coverage error adapts to boundary points automatically when appropriate Studentization is used; however, the MSE-optimal bandwidth for the original point estimator is suboptimal. All the results are established using valid Edgeworth expansions and illustrated with simulated data. Our findings have important consequences for empirical work as they indicate that bias-corrected confidence intervals, coupled with appropriate standard errors, have smaller coverage error and are less sensitive to tuning parameter choices in practically relevant cases where additional smoothness is available

    Regression Discontinuity Designs Using Covariates

    Full text link
    We study regression discontinuity designs when covariates are included in the estimation. We examine local polynomial estimators that include discrete or continuous covariates in an additive separable way, but without imposing any parametric restrictions on the underlying population regression functions. We recommend a covariate-adjustment approach that retains consistency under intuitive conditions, and characterize the potential for estimation and inference improvements. We also present new covariate-adjusted mean squared error expansions and robust bias-corrected inference procedures, with heteroskedasticity-consistent and cluster-robust standard errors. An empirical illustration and an extensive simulation study is presented. All methods are implemented in \texttt{R} and \texttt{Stata} software packages

    Binscatter Regressions

    Full text link
    We introduce the \texttt{Stata} (and \texttt{R}) package \textsf{Binsreg}, which implements the binscatter methods developed in \citet*{Cattaneo-Crump-Farrell-Feng_2019_Binscatter}. The package includes the commands \texttt{binsreg}, \texttt{binsregtest}, and \texttt{binsregselect}. The first command (\texttt{binsreg}) implements binscatter for the regression function and its derivatives, offering several point estimation, confidence intervals and confidence bands procedures, with particular focus on constructing binned scatter plots. The second command (\texttt{binsregtest}) implements hypothesis testing procedures for parametric specification and for nonparametric shape restrictions of the unknown regression function. Finally, the third command (\texttt{binsregselect}) implements data-driven number of bins selectors for binscatter implementation using either quantile-spaced or evenly-spaced binning/partitioning. All the commands allow for covariate adjustment, smoothness restrictions, weighting and clustering, among other features. A companion \texttt{R} package with the same capabilities is also available

    On Binscatter

    Full text link
    Binscatter is very popular in applied microeconomics. It provides a flexible, yet parsimonious way of visualizing and summarizing large data sets in regression settings, and it is often used for informal evaluation of substantive hypotheses such as linearity or monotonicity of the regression function. This paper presents a foundational, thorough analysis of binscatter: we give an array of theoretical and practical results that aid both in understanding current practices (i.e., their validity or lack thereof) and in offering theory-based guidance for future applications. Our main results include principled number of bins selection, confidence intervals and bands, hypothesis tests for parametric and shape restrictions of the regression function, and several other new methods, applicable to canonical binscatter as well as higher-order polynomial, covariate-adjusted and smoothness-restricted extensions thereof. In particular, we highlight important methodological problems related to covariate adjustment methods used in current practice. We also discuss extensions to clustered data. Our results are illustrated with simulated and real data throughout. Companion general-purpose software packages for \texttt{Stata} and \texttt{R} are provided. Finally, from a technical perspective, new theoretical results for partitioning-based series estimation are obtained that may be of independent interest
    corecore